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Precalculus 1

Most of the equations you’ll encounter in calculus are functions. Since not 

all equations are functions, it’s important to understand that only functions 

can pass the Vertical Line Test.
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Vertical line test

Most of the equations you’ll encounter in calculus are functions. Since not 

all equations are functions, it’s important to understand that only functions 

can pass the Vertical Line Test. In other words, in order for a graph to be a 

function, no completely vertical line can cross its graph more than once. 

The graph below doesn't pass the Vertical Line Test because a vertical line 

intersects it more than once.

Passing the Vertical Line Test also implies that the graph has only one 

output value for y for any input value of x. You know that an equation is 

not a function if y can be two different values at a single x value.

You know that the circle below is not a function because any vertical line 

you draw between x = − 2 and x = 2 will cross the graph twice, which 



causes the graph to fail the Vertical Line Test. In fact, circles can never be 

called functions because they'll never pass the Vertical Line Test.

You can also test this algebraically by plugging in a point between −2 and 

2 for x, such as x = 1.

Example

Determine algebraically whether or not x2 + y2 = 1 is a function.

Plug in 0 for x and simplify.

(0)2 + y2 = 1

y2 = 1



y2 = 1

y = ± 1

Looking at it another way, at x = 0 , y can be both 2 and −2 . Since a 

function can only have one unique output value for y for any input value of 

x, the function fails the Vertical Line Test and is therefore not a function. 

We’ve now proven with both the graph and with algebra that this circle is 

not a function.



Limits & Continuity 2

The limit of a function is the value the function approaches at a given 

value of x, regardless of whether the function actually reaches that value.
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Idea of the limit

The limit of a function is the value the function approaches at a given 

value of x, regardless of whether the function actually reaches that value.

For an easy example, consider the function

f (x) = x + 1

When x = 5, f (x) = 6. Therefore, 6 is the limit of the function at x = 5, 

because 6 is the value that the function approaches as the value of x gets 

closer and closer to 5.

I know it’s strange to talk about the value that a function “approaches.” 

Think about it this way: If you set x = 4.9999 in the function above, then 

f (x) = 5.9999. Similarly, if you set x = 5.0001, then f (x) = 6.0001.

You can begin to see that as you get closer to x = 5, whether you’re 

approaching it from the 4.9999 side or the 5.0001 side, the value of f (x) gets 

closer and closer to 6.

x	 4.9999	 5.0000	 5.0001

f (x)	 5.9999	 6.0000	 6.0001

In this simple example, the limit of the function is clearly 6 because that is 

the actual value of the function at that point; the point is defined. 

However, finding limits gets a little trickier when we start dealing with 

points of the graph that are undefined.



In the next section, we’ll talk about when limits do and do not exist, and 

some more creative methods for finding the limit.



One-sided limits

General vs. one-sided limits

When you hear your professor talking about limits, he or she is usually 

talking about the general limit. Unless a right- or left-hand limit is 

specifically specified, you’re dealing with a general limit.

The general limit exists at the point x = c if

1. The left-hand limit exists at x = c,

2. The right-hand limit exists at x = c, and

3. The left- and right-hand limits are equal.

These are the three conditions that must be met in order for the general 

limit to exist. The general limit will look something like this:

lim
x→2

f (x) = 4

You would read this general limit formula as “The limit of f of x as x 

approaches 2 equals 4.”

Left- and right-hand limits may exist even when the general limit does not. 

If the graph approaches two separate values at the point x = c as you 

approach c from the left- and right-hand side of the graph, then separate 

left- and right-hand limits may exist.

Left-hand limits are written as



lim
x→2−

f (x) = 4

The negative sign after the 2 indicates that we’re talking about the limit as 

we approach 2 from the negative, or left-hand side of the graph.

Right-hand limits are written as

lim
x→2+

f (x) = 4

The positive sign after the 2 indicates that we’re talking about the limit as 

we approach 2 from the positive, or right-hand side of the graph.

In the graph on the right, the general limit exists at x = − 1 because the 

left- and right- hand limits both approach 1. On the other hand, the general 

limit does not exist at x = 1 because the left-hand and right-hand limits are 

not equal, due to a break in the graph.



You can see from the graph that the left- and right-hand limits are equal at 

x = − 1, but not at x = 1.



Where limits don’t exist

We already know that a general limit does not exist where the left- and 

right-hand limits are not equal. Limits also do not exist whenever we 

encounter a vertical asymptote.

There is no limit at a vertical asymptote because the graph of a function 

must approach one fixed numerical value at the point x = c for the limit to 

exist at c. The graph at a vertical asymptote is increasing and/or 

decreasing without bound, which means that it is approaching infinity 

instead of a fixed numerical value.

In the graph below, separate right- and left-hand limits exist at x = 1, so the 

general limit does not exist at that point. The left-hand limit is 2, because 

that is the value that the graph approaches as you trace the graph from 

left to right. On the other hand, the right-hand limit is −1, since that’s the 

value that the graph approaches as you trace the graph from right to left.



Where there is a vertical asymptote at x = 2, the left-hand limit is −∞, and 

the right-hand limit is +∞. However, the general limit does not exist at the 

vertical asymptote because the left- and right-hand limits are unequal. So 

we can say that the general limit does not exist at x = 1 or at x = 2.



Solving limits with substitution

Sometimes you can find the limit just by plugging in the number that your 

function is approaching. You could have done this with our original limit 

example, f (x) = x + 1. If you just plug 5 into this function, you get 6, which is 

the limit of the function. Below is another example, where you can simply 

plug in the number you’re approaching to solve for the limit.

Example

Evaluate the limit.

lim
x→−2

x2 + 2x + 6

Plug in −2 for x and simplify.

(−2)2 + 2(−2) + 6

4 − 4 + 6
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Solving limits with factoring

When you can’t just plug in the value you’re evaluating, your next 

approach should be factoring.

Example

Evaluate the limit.

lim
x→4

x2 − 16
x − 4

Just plugging in 4 would give us a nasty 0/0 result. Therefore, we’ll try 

factoring instead.

lim
x→4

(x + 4)(x − 4)
x − 4

Canceling (x − 4) from the top and bottom of the fraction leaves us with 

something that is much easier to evaluate:

lim
x→4

x + 4

Now the problem is simple enough that we can use substitution to find the 

limit.

4 + 4
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Solving limits with conjugate method

This method can only be used when either the numerator or denominator 

contains exactly two terms. Needless to say, its usefulness is limited. 

Here’s an example of a great, and common candidate for the conjugate 

method. 

lim
h→0

4 + h − 2
h

In this example, the substitution method would result in a 0 in the 

denominator. We also can’t factor and cancel anything out of the fraction. 

Luckily, we have the conjugate method. Notice that the numerator has 

exactly two terms, 4 + h and −2.

Conjugate method to the rescue! In order to use it, we have to multiply by 

the conjugate of whichever part of the fraction contains the radical. In this 

case, that’s the numerator. The conjugate of two terms is those same two 

terms with the opposite sign in between them.

Notice that we multiply both the numerator and denominator by the 

conjugate, because that’s like multiplying by 1, which is useful to us but 

still doesn’t change the value of the original function.

Example

Evaluate the limit.

lim
h→0

4 + h − 2
h



Multiply the numerator and denominator by the conjugate.

lim
h→0

4 + h − 2
h

⋅ ( 4 + h + 2

4 + h + 2 )
Simplify and cancel the h.

lim
h→0

(4 + h) + 2 4 + h − 2 4 + h − 4

h( 4 + h + 2)

lim
h→0

(4 + h) − 4

h( 4 + h + 2)

lim
h→0

h

h( 4 + h + 2)

lim
h→0

1

4 + h + 2

Since we’re evaluating at 0, plug that in for h and solve.

1

4 + 0 + 2

1
2 + 2

1
4



Remember, if you’re trying to evaluate a limit and substitution, factoring, 

and conjugate method all don’t work, you can always go back to the 

simple method of plugging in a number very close to the value you’re 

approaching and solve for the limit that way.



Continuity

You should have some intuition about what it means for a graph to be 

continuous. Basically, a function is continuous if there are no holes, breaks, 

jumps, fractures, broken bones, etc. in its graph. 

You can also think about it this way: A function is continuous if you can 

draw the entire thing without picking up your pencil. Let’s take some time 

to classify the most common types of discontinuity.

Point discontinuity

Point discontinuity exists when there is a hole in the graph at one point. 

You usually find this kind of discontinuity when your graph is a fraction like 

this:

f (x) =
x2 + 11x + 28

x + 4

In this case, the point discontinuity exists at x = − 4, where the 

denominator would equal 0. This function is defined and continuous 

everywhere, except at x = − 4. The graph of a point discontinuity is easy to 

pick out because it looks totally normal everywhere, except for a hole at a 

single point.

Jump discontinuity



You’ll usually encounter jump discontinuities with piecewise-defined 

functions, which is a function for which different parts of the domain are 

defined by different functions. A common example used to illustrate 

piecewise-defined functions is the cost of postage at the post office.

Below is an example of how the cost of postage might be defined as a 

function, as well as the graph of the cost function. They tell us that the 

cost per ounce of any package lighter than 1 pound is 20 cents per ounce; 

that the cost of every ounce from 1 pound to anything less than 2 pounds 

is 40 cents per ounce; etc.

f (x) =

0.2 0 < x < 1
0.4 1 ≤ x < 2
0.6 2 ≤ x < 3
0.8 3 ≤ x < 4
1.00 4 ≤ x



Every break in this graph is a point of jump discontinuity. You can 

remember this by imagining yourself walking along on top of the first 

segment of the graph. In order to continue, you’d have to jump up to the 

second segment.

Infinite (essential) discontinuity

You’ll see this kind of discontinuity called both infinite discontinuity and 

essential discontinuity. In either case, it means that the function is 

discontinuous at a vertical asymptote. Vertical asymptotes are only points 

of discontinuity when the graph exists on both sides of the asymptote.

The graph below shows a vertical asymptote that makes the graph 

discontinuous, because the function exists on both sides of the vertical 

asymptote.



On the other hand, the vertical asymptote in this graph is not a point of 

discontinuity, because it doesn’t break up any part of the graph.





Derivatives 3

The derivative of a function f (x) is written as f′�(x), and read as “ f prime of 

x.” By definition, the derivative is the slope of the original function. Let’s 

find out why.
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Definition of the derivative

The definition of the derivative, also called the “difference quotient”, is a 

tool we use to find derivatives “the long way”, before we learn all the 

shortcuts later that let us find them “the fast way”.

Mostly it’s good to understand the definition of the derivative so that we 

have a solid foundation for the rest of calculus. So let’s talk about how we 

build the difference quotient.

Secant and tangent lines

A tangent line is a line that just barely touches the edge of the graph, 

intersecting it at only one specific point. Tangent lines look very graceful 

and tidy.

A secant line, on the other hand, is a line that runs right through the 

middle of a graph, sometimes hitting it at multiple points, and looks 

generally meaner.

A tangent line:



A secant line:



It’s important to realize here that the slope of the secant line is the 

average rate of change over the interval between the points where the 

secant line intersects the graph. The slope of the tangent line instead 

indicates an instantaneous rate of change, or slope, at the single point 

where it intersects the graph.

Creating the derivative

If we start with a point (c, f (c)) on a graph, and move a certain distance Δx 

to the right of that point, we can call the new point on the graph 

(c + Δx, f (c + Δx)). 

Connecting those points together gives us a secant line, and we can use

y2 − y1

x2 − x1

to determine that the slope of the secant line is

f (c + Δx) − f (c)
(c + Δx) − c

which when we simplify gives us

f (c + Δx) − f (c)
Δx

The point is that, if I take my second point and start moving it slowly left, 

closer to the original point, the slope of the secant line becomes closer to 

the slope of the tangent line at the original point.



In other words, as the secant line moves closer and closer to the tangent 

line, the points where the line intersects the graph get closer together, 

which eventually reduces Δx to 0.

Running through this exercise allows us to realize that if I reduce Δx to 0 

and the distance between the two secant points becomes nothing, that 

the slope of the secant line is now exactly the same as the slope of the 

tangent line. In fact, we’ve just changed the secant line into the tangent 

line entirely.

That’s how we create the formula above, which is the very definition of the 

derivative, which is why the definition of the derivative is the slope of the 

function at a single point.

Using the difference quotient

To find the derivative of a function using the difference quotient, follow 

these steps:

1.  Plug in x + h for every x in your original function. Sometimes you’ll 

also see h as Δx. 

2. Plug your answer from Step 1 in for f (x + h) in the difference 

quotient.

3. Plug your original function in for f (x) in the difference quotient.

4. Put h in the denominator.

5. Expand all terms and collect like terms.



6. Factor out h from the numerator, then cancel it from the 

numerator and denominator.

7. Plug in 0 for h and simplify.

Example

Find the derivative.

f (x) = x2 − 5x + 6

After replacing x with (x + Δx) in f (x), plug in your answer for f (c + Δx). Then 

plug in f (x) as-is for f (c). Put Δx in the denominator.

lim
Δx→0

[(x + Δx)2 − 5(x + Δx) + 6] − (x2 − 5x + 6)
Δx

lim
Δx→0

x2 + 2xΔx + Δx2 − 5x − 5Δx + 6 − x2 + 5x − 6
Δx

Collect similar terms together then factor Δx out of the numerator and 

cancel it from the fraction.

lim
Δx→0

Δx2 + 2xΔx − 5Δx
Δx

lim
Δx→0

Δx(Δx + 2x − 5)
Δx

lim
Δx→0

Δx + 2x − 5



For Δx, plug in the number you’re approaching, in this case 0. Then 

simplify and solve.

0 + 2x − 5

2x − 5



Derivative rules

Finally, we’ve gotten to the point where things start to get easier. We’ve 

moved past the difference quotient, which was cumbersome and tedious 

and generally not fun. You’re about to learn several new derivative tricks 

that will make this whole process a whole lot easier, starting with the 

derivative of a constant.

The derivative of a constant

The derivative of a constant (a term with no variable attached to it) is 

always 0. Remember that the graph of any constant is a perfectly 

horizontal line. Remember also that the slope of any horizontal line is 0. 

Because the derivative of a function is the slope of that function, and the 

slope of a horizontal line is 0, the derivative of any constant must be 0.

The derivative rules

In the next sections, we’ll learn about how to use the most common 

derivative rules, including

Power rule h(x) = axn h′�(x) = (a ⋅ n)xn−1

Product rule h(x) = f (x)g(x) h′�(x) = f (x)g′�(x) + f′�(x)g(x)

Quotient rule h(x) =
f (x)
g(x)

 h′�(x) =
f′�(x)g(x) − f (x)g′�(x)

[g(x)]2



Reciprocal rule h(x) =
a

f (x)
 h′�(x) = − a

f′�(x)

[f (x)]2



Power rule

The power rule is the tool you’ll use most frequently when finding 

derivatives. The rule says that for any term of the form axn, the derivative 

of the term is

(a ⋅ n)xn−1

To use the power rule, multiply the variable’s exponent n, by its coefficient 

a, then subtract 1 from the exponent. If there is no coefficient (the 

coefficient is 1), then the exponent will become the new coefficient.

Example

Find the derivative of the function.

f (x) = 7x3

Applying power rule gives

f′�(x) = 7(3)x3−1

f′�(x) = 21x2



Product rule

If a function contains two variable expressions that are multiplied 

together, you cannot simply take their derivatives separately and then 

multiply the derivatives together. You have to use the product rule. Here is 

the formula:

Given a function 

h(x) = f (x)g(x)

then its derivative is

h′�(x) = f (x)g′�(x) + f′�(x)g(x)

To use the product rule, multiply the first function by the derivative of the 

second function, then add the derivative of the first function times the 

second function to your result.

Example

Find the derivative of the function.

h(x) = x2e3x

The two functions in this problem are x2 and e3x. It doesn’t matter which 

one you choose for f (x) and g(x). Let’s assign f (x) to x2 and g(x) to e3x. The 

derivative of f (x) is f′�(x) = 2x. The derivative of g(x) is g′�(x) = 3e3x. 

According to the product rule,



h′�(x) = (x2) (3e3x) + (2x) (e3x)

h′�(x) = 3x2e3x + 2xe3x



Quotient rule

Just as you must always use the product rule when two variable 

expressions are multiplied, you must use the quotient rule whenever two 

variable expressions are divided. Given a function

h(x) =
f (x)
g(x)

then its derivative is

h′�(x) =
f′�(x)g(x) − f (x)g′ �(x)

[g(x)]2

Example

Use quotient rule to find the derivative.

h(x) =
x2

ln x

Based on the quotient rule formula, we know that f (x) is the numerator and 

therefore f (x) = x2 and that g(x) is the denominator and therefore that 

g(x) = ln x. f′�(x) = 2x, and g′�(x) = 1/x. Plugging all of these components into 

the quotient rule gives

h′�(x) =
(ln x)(2x) − (x2) ( 1

x )
(ln x)2



h′�(x) =
2x ln x − x

(ln x)2



Chain rule with power rule

The chain rule is often one of the hardest concepts for calculus students to 

understand. It’s also one of the most important, and it’s used all the time, 

so make sure you don’t leave this section without a solid understanding. 

Chain rule lets us calculate derivatives of equations made up of nested 

functions, where one function is the “outside” function and one function is 

the “inside function. If we have an equation like

y = g [f (x)]

then g [f (x)] is the outside function and f (x) is the inside function. The 

derivative looks like

y′� = {g′�[f (x)]} [f′�(x)]

Notice here that we took the derivative first of the outside function, 

g [f (x)], leaving the inside function, f (x), completely untouched, and then 

we multiplied our result by the derivative of the inside function.

So applying the chain rule requires just two simple steps.

1.  Take the derivative of the “outside” function, leaving the “inside” 

function untouched.

2. Multiply your result by the derivative of the “inside” function.

Sometimes it’s helpful to use substitution to make it easier to think about 

g [f (x)]. We just replace the inside function with u, and we get



y = g[u]

Then the derivative would be

y′� = g′ �[u](u′�)

If you’re going to use substitution, make sure you back-substitute at the 

end of the problem to get your final answer.

Example

Use chain rule to find the derivative.

y = (4x8 − 6)6

Our outside function is (4x8 − 6)6
, and our inside function is 4x8 − 6. Using 

the substitution method, u = 4x8 − 6 and u′� = 32x7.

We’ll substitute u into the original equation and get

y = (u)6

We’ll start to calculate the derivative, and using power rule with chain rule, 

we find that

y′� = 6(u)5(u′�)

Finally, we back-substitute for u and u′�.

y′� = 6 (4x8 − 6)5 (32x7)



y′� = 192x7 (4x8 − 6)5

We just worked an example of chain rule used in conjunction with power 

rule. We’ll also need to know how to use it in combination with product 

rule, with quotient rule, and with trigonometric functions, which we’ll 

tackle in the next few lessons.



Equation of the tangent line

You’ll see it written different ways, but in general the formula for the 

equation of the tangent line is

y = f (a) + f′�(a)(x − a)

When a problem asks you to find the equation of the tangent line, you’ll 

always be asked to evaluate at the point where the tangent line intersects 

the graph.

In order to find the equation of the tangent line, you’ll need to plug that 

point into the original function, then substitute your answer for f (a). Next 

you’ll take the derivative of the function, plug the same point into the 

derivative and substitute your answer for f′�(a).

Example

Find the equation of the tangent line at x = 4.

f (x) = 6x2 − 2x + 5

First, plug x = 4 into the original function.

f (4) = 6(4)2 − 2(4) + 5

f (4) = 96 − 8 + 5

f (4) = 93



Next, take the derivative and plug in x = 4.

f′�(x) = 12x − 2

f′�(4) = 12(4) − 2

f′�(4) = 46

Finally, insert both f (4) and f′�(4) into the tangent line formula, along with 4 

for a, since this is the point at which we’re asked to evaluate.

y = 93 + 46(x − 4)

You can either leave the equation in this form, or simplify it further:

y = 93 + 46x − 184

y = 46x − 91



Implicit differentiation

Implicit Differentiation allows you to take the derivative of a function that 

contains both x and y on the same side of the equation. If you can’t solve 

the function for y, implicit differentiation is the only way to take the 

derivative.

On the left sides of these derivatives, instead of seeing y′� or f′�(x), you’ll find 

dy/dx instead. In this notation, the numerator tells you what function you’re 

deriving, and the denominator tells you what variable is being derived. 

dy/dx is literally read “the derivative of y with respect to x.”

One of the most important things to remember, and the thing that usually 

confuses students the most, is that we have to treat y as a function and 

not just as a variable like x. Therefore, we always multiply by dy/dx when 

we take the derivative of y. To use implicit differentiation, follow these 

steps:

1.  Differentiate both sides with respect to x.

2. Whenever you encounter y, treat it as a variable just like x, then 

multiply that term by dy/dx.

3. Move all terms involving dy/dx to the left side and everything else 

to the right.

4. Factor out dy/dx on the left and divide both sides by the other 

left-side factor so that dy/dx is the only thing remaining on the left.

Example



Use implicit differentiation to find the derivative.

x3 + y3 = 9xy

Our first step is to differentiate both sides with respect to x. Treat y as a 

variable just like x, but whenever you take the derivative of a term that 

includes y, multiply by dy/dx. You’ll need to use the product rule for the 

right side, treating 9x as one function and y as another.

3x2 + 3y2 dy
dx

= (9)(y) + (9x)(1)
dy
dx

3x2 + 3y2 dy
dx

= 9y + 9x
dy
dx

Move all terms that include dy/dx to the left side, and move everything else 

to the right side.

3y2 dy
dx

− 9x
dy
dx

= 9y − 3x2

Factor out dy/dx on the left, then divide both sides by (3y2 − 9x).

dy
dx (3y2 − 9x) = 9y − 3x2

dy
dx

=
9y − 3x2

3y2 − 9x

Dividing the right side by 3 to simplify gives us our final answer.



dy
dx

=
3y − x2

y2 − 3x

Equation of the tangent line

We’ll do another complete example in the next section, but let’s get a 

preview of what it looks like to find the equation of the tangent line for an 

implicitly-defined function.

Just for fun, let’s pretend you’re asked to find the equation of the tangent 

line of the function in the previous example at the point (2,3).

You’d just pick up right where you left off, and plug in this point to the 

derivative of the function to find the slope of the tangent line.

Example (continued)

dy
dx

(2,3) =
3(3) − (2)2

(3)2 − 3(2)

dy
dx

(2,3) =
9 − 4
9 − 6

dy
dx

(2,3) =
5
3

Since you have the point (2,3) and the slope of the tangent line at the point 

(2,3), plug the point and the slope into point-slope form to find the 

equation of the tangent line. Then simplify.



y − 3 =
5
3

(x − 2)

3y − 9 = 5(x − 2)

3y − 9 = 5x − 10

3y = 5x − 1

y =
5
3

x −
1
3



Optimization

Graph sketching is not very hard, but there are a lot of steps to remember. 

Like anything, the best way to master it is with a lot of practice. 

When it comes to sketching the graph, if possible I absolutely recommend 

graphing the function on your calculator before you get started so that 

you have a visual of what your graph should look like when it’s done. You 

certainly won’t get all the information you need from your calculator, so 

unfortunately you still have to learn the steps, but it’s a good double-

check system.

Our strategy for sketching the graph will include the following steps:

1.  Find critical points.

2. Determine where f (x) is increasing and decreasing.

3. Find inflection points.

4. Determine where f (x) is concave up and concave down.

5. Find x- and y-intercepts.

6. Plot critical points, possible inflection points and intercepts.

7. Determine behavior as f (x) approaches ±∞.

8. Draw the graph with the information we’ve gathered.



Critical points

Critical points occur at x-values where the function’s derivative is either 

equal to zero or undefined. Critical points are the only points at which a 

function can change direction, and also the only points on the graph that 

can be maxima or minima of the function.

Example

Find the critical points of the function.

f (x) = x +
4
x

Take the derivative and simplify. You can move the x in the denominator 

of the fraction into the numerator by changing the sign on its exponent 

from 1 to −1.

f (x) = x + 4x−1

Using power rule to take the derivatives gives

f′�(x) = 1 − 4x−2

f′�(x) = 1 −
4
x2

Now set the derivative equal to 0 and solve for x.

0 = 1 −
4
x2



1 =
4
x2

x2 = 4

x = ± 2

Increasing and decreasing

A function that is increasing (moving up as you travel from left to right 

along the graph), has a positive slope, and therefore a positive derivative.



Similarly, a function that is decreasing (moving down as you travel from 

left to right along the graph), has a negative slope, and therefore a 

negative derivative.

Based on this information, it makes sense that the sign (positive or 

negative) of a function’s derivative indicates the direction of the original 

function. If the derivative is positive at a point, the original function is 

increasing at that point. Not surprisingly, if the derivative is negative at a 

point, the original function is decreasing there.

We already know that the direction of the graph can only change at the 

critical points that we found earlier. As we continue with our example, we’ll 

therefore plot those critical points on a wiggle graph to test where the 

function is increasing and decreasing.



Example (continued)

Find the intervals on which the function is increasing and decreasing.

f (x) = x +
4
x

First, we create our wiggle graph and plot our critical points.

−2 2

Next, we pick values on each interval of the wiggle graph and plug them 

into the derivative. If we get a positive result, the graph is increasing. A 

negative result means it’s decreasing. The intervals that we will test are

−∞ < x < − 2

−2 < x < 2

2 < x < ∞

To test −∞ < x < − 2, we’ll plug −3 into the derivative, since −3 is a value in 

that interval.

f′�(−3) = 1 −
4

(−3)2

f′�(−3) = 1 −
4
9



f′�(−3) =
9
9

−
4
9

f′�(−3) =
5
9

> 0

To test −2 < x < 2, we’ll plug −1 into the derivative.

f′�(−1) = 1 −
4

(−1)2

f′�(−1) = 1 − 4

f′�(−1) = − 3 < 0

To test 2 < x < ∞, we’ll plug 3 into the derivative.

f′�(3) = 1 −
4

(3)2

f′�(3) = 1 −
4
9

f′�(3) =
9
9

−
4
9

f′�(3) =
5
9

> 0

Now we plot the results on our wiggle graph,

−2 2

+ +

and we can see that f (x) is



• increasing on −∞ < x < − 2
• decreasing on −2 < x < 2
• increasing on 2 < x < ∞

Inflection points

Inflection points are just like critical points, except that they indicate where 

the graph changes concavity, instead of indicating where the graph 

changes direction, which is the job of critical points. We’ll learn about 

concavity in the next section. For now, let’s find our inflection points.

In order to find inflection points, we first take the second derivative, which 

is the derivative of the derivative. We then set the second derivative equal 

to 0 and solve for x.

Example (continued)

We’ll start with the first derivative, and take its derivative to find the 

second derivative.

f′�(x) = 1 −
4
x2

f′�(x) = 1 − 4x−2

f′�′�(x) = 0 + 8x−3

f′�′�(x) =
8
x3

Now set the second derivative equal to 0 and solve for x.



0 =
8
x3

There is no solution to this equation, but we can see that the second 

derivative is undefined at x = 0. Therefore, x = 0 is the only possible 

inflection point.

Concavity

Concavity is indicated by the sign of the function’s second derivative, f′�′�(x). 
The function is concave up everywhere the second derivative is positive 

(f′�′�(x) > 0), and concave down everywhere the second derivative is 

negative (f′�′�(x) < 0). 

The graph below illustrates examples of concavity. From −∞ < x < 0, the 

graph is concave down. Think about the fact that a graph that is concave 

down looks like a frown. The inflection point at which the graph changes 

concavity is at x = 0. On the interval 0 < x < ∞, the graph is concave up, 

and it looks like a smile.



We can use the same wiggle graph technique, along with the possible 

inflection point we just found, to test for concavity.

Example (continued)

Since our only inflection point was at x = 0, let’s go ahead and plot that on 

our wiggle graph now.

0

As you might have guessed, we’ll be testing values in the following 

intervals:

−∞ < x < 0



0 < x < ∞

To test −∞ < x < 0, we’ll plug −1 into the second derivative.

f′�′�(−1) =
8

(−1)3
= − 8 < 0

To test 0 < x < ∞, we’ll plug 1 into the second derivative.

f′�′�(1) =
8

(1)3
= 8 > 0

Now we can plot the results on our wiggle graph.

0

+

We determine that f (x) is concave down on the interval −∞ < x < 0 and 

concave up on the interval 0 < x < ∞.

Intercepts

To find the points where the graph intersects the x- and y-axis, we can 

plug 0 into the original function for one variable and solve for the other.

Example (continued)

Given our original function



f (x) = x +
4
x

we’ll plug 0 in for x to find y-intercepts.

y = 0 +
4
0

Immediately we can recognize there are no y-intercepts because we can’t 

have a 0 result in the denominator.

Let’s plug in 0 for y to find x-intercepts.

0 = x +
4
x

Multiply every term by x to eliminate the fraction.

0 = x2 + 4

−4 = x2

Since there are no real solutions to this equation, we know that this 

function has no x-intercepts.

Local and global extrema

Maxima and minima (these are the plural versions of the singular words 

maximum and minimum) can only exist at critical points, but not every 

critical point is necessarily an extrema. To know for sure, you have to test 

each solution separately.



In the graph below, minimums exist at points A and C. Based on the y-

values at those points, the  global minimum exists at A, and a local 

minimum exists at C.

If you’re dealing with a closed interval, for example some function f (x) on 

the interval [0,5], then the endpoints at x = 0 and x = 5 are candidates for 

extrema and must also be tested. We’ll use the first derivative test to find 

extrema.

First derivative test

Remember the wiggle graph that we created from our earlier test for 

increasing and decreasing? 



−2 2

+ +

Based on the positive and negative signs on the graph, you can see that 

the function is increasing, then decreasing, then increasing again, and if 

you can picture a function like that in your head, then you know 

immediately that we have a local maximum at x = − 2 and a local minimum 

at x = 2.

You really don’t even need the first derivative test, because it tells you in a 

formal way exactly what you just figured out on your own:

1.  If the derivative is negative to the left of the critical point and 

positive to the right of it, the graph has a local minimum at that 

point.

2. If the derivative is positive to the left of the critical point and 

negative on the right side of it, the graph has a local maximum at 

that point.

As a side note, if it’s positive on both sides or negative on both sides, then 

the point is neither a local maximum nor a local minimum, and the test is 

inconclusive.

Remember, if you have more than one local maximum or minimum, you 

must plug in the value of x at the critical points to your original function. 

The y-values you get back will tell you which points are global maxima and 

minima, and which ones are only local. For example, if you find that your 

function has two local maxima, you can plug in the value for x at those 



critical points. As an example, if the first returns a y-value of 10 and the 

second returns a y-value of 5, then the first point is your global maximum 

and the second point is your local maximum.

If you’re asked to determine where the function has its maximum/

minimum, your answer will be in the form x=[value]. But if you’re asked for 

the value at the maximum/minimum, you’ll have to plug the x-value into 

your original function and state the y-value at that point as your answer.

Second derivative test

You can also test for local maxima and minima using the second derivative 

test if it easier for you than the first derivative test. In order to use this 

test, simply plug in your critical points to the second derivative. If your 

result is negative, that point is a local maximum. If the result is positive, the 

point is a local minimum. If the result is zero, you can’t draw a conclusion 

from the second derivative test, and you have to resort to the first 

derivative test to solve the problem. Let’s try it.

Example (continued)

Remember that our critical points are x = − 2 and x = 2.

f′�′�(−2) =
8

(−2)3

f′�′�(−2) =
8

−8

f′�′�(−2) = − 1 < 0



Since the second derivative is negative at x = − 2, we conclude that there 

is a local maximum at that point.

f′�′�(2) =
8

(2)3

f′�′�(2) =
8
8

f′�′�(2) = 1 > 0

Since the second derivative is positive at x = 2, we conclude that there is a 

local minimum at that point.

These are the same results we got from the first derivative test, so why 

did we do this? Because you may be asked on a test to use a particular 

method to test the extrema, so you should really know how to use both 

tests.

Vertical asymptotes

Vertical asymptotes are the easiest to test for, because they only exist 

where the function is undefined. Remember, a function is undefined 

whenever we have a value of zero as the denominator of a fraction, or 

whenever we have a negative value inside a square root sign. Consider the 

example we’ve been working with in this section:

f (x) = x +
4
x



You should see immediately that we have a vertical asymptote at x = 0 

because plugging in 0 for x makes the denominator of the fraction 0, and 

therefore undefined.

Horizontal asymptotes

Vertical and horizontal asymptotes are similar in that they can only exist 

when the function is a rational function.

When we’re looking for horizontal asymptotes, we only care about the 

first term in the numerator and denominator. Both of those terms will have 

what’s called a degree, which is the exponent on the variable. If our 

function is

f (x) =
x3 + lower-degree terms
x2 + lower-degree terms

then the degree of the numerator is 3 and the degree of the denominator 

is 2.

Here’s how we test for horizontal asymptotes.

1.  If the degree of the numerator is less than the degree of the 

denominator, then the x-axis is a horizontal asymptote.

2. If the degree of the numerator is equal to the degree of the 

denominator, then the coefficient of the first term in the 

numerator divided by the coefficient in the first term of the 

denominator is the horizontal asymptote.



3. If the degree of the numerator is greater than the degree of the 

denominator, there is no horizontal asymptote.

Using the example we’ve been working with throughout this section, we’ll 

determine whether the function has any horizontal asymptotes. We can 

use long division to convert the function into one fraction. The following is 

the same function as our original function, just consolidated into one 

fraction after multiplying the first term by x /x:

f (x) =
x2 + 4

x

We can see immediately that the degree of our numerator is 2, and that 

the degree of our denominator is 1. That means that our numerator is one 

degree higher than our denominator, which means that this function does 

not have a horizontal asymptote.

Slant asymptotes

Slant asymptotes are a special case. They exist when the degree of the 

numerator is 1 greater than the degree of the denominator. Let’s take the 

example we’ve been using throughout this section.

f (x) = x +
4
x

First, we’ll convert this function to a rational function by multiplying the 

first term by x /x and then combining the fractions.



f (x) =
x2 + 4

x

We can see that the degree of our numerator is one greater than the 

degree of our denominator, so we know that we have a slant asymptote.

To find the equation of that asymptote, we divide the denominator into 

the numerator using long division and we get

f (x) = x +
4
x

Right back to our original function! That won’t always happen, our function 

just happened to be the composition of the quotient and remainder.

Whenever we use long division in this way to find the slant asymptote, the 

polynomial part is the slant asymptote and the denominator of the fraction 

gives the vertical asymptote. Therefore, in this case, our slant asymptote 

is the line y = x, and the vertical asymptote is the line x = 0.

Sketching the graph

Now that we’ve finished gathering all of the information we can about our 

graph, we can start sketching it. This will be something you’ll just have to 

practice and get the hang of.

The first thing you should do is sketch any asymptotes, because you know 

that your graph won’t cross those lines, so they act as good guidelines. So 

let’s draw in the lines x = 0 and y = x.



Knowing that the graph is concave up in the upper right, and concave 

down in the lower left, and realizing that it can’t cross either of the 

asymptotes, you should be able to make a pretty good guess that it looks 

like:



In this case, picturing the graph was a little easier because of the two 

asymptotes, but if you didn’t have the slant asymptote, you’d want to 

graph the x- and y-intercepts, critical and inflection points, and extrema, 

and then connect the points using the information you have about 

increasing/decreasing and concavity.



Integrals 4

The integral of a function is its antiderivative. In other words, to find a 

function’s integral, we perform the opposite actions that we would have 

taken to find its derivative. The value we find for the integral models the 

area underneath the graph of the function. Let’s find out why.
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Definite integrals

Evaluating a definite integral means finding the area enclosed by the 

graph of the function and the x-axis, over the given interval [a, b].

In the graph below, the shaded area is the integral of f (x) on the interval 

[a, b]. Finding this area means taking the integral of f (x), plugging the upper 

limit b into the result, and then subtracting from that whatever you get 

when you plug in the lower limit a.

Example

Evaluate the integral.



∫
2

0
3x2 − 5x + 2 dx

If we let f (x) = 3x2 − 5x + 2 and then integrate the polynomial, we get

F(x) = (x3 −
5
2

x2 + 2x + C)
2

0

where C is the constant of integration.

Evaluating on the interval [0,2], we get

F(x) = [(2)3 −
5
2

(2)2 + 2(2) + C] − [(0)3 −
5
2

(0)2 + 2(0) + C]
F(x) = (8 − 10 + 4 + C) − (0 − 0 + 0 + C)

F(x) = 8 − 10 + 4 + C − C

F(x) = 2

As you can see, the constant of integration “cancels out” in the end, 

leaving a definite value as the final answer, not just a function for y defined 

in terms of x.

Since this will always be the case, you can just leave C out of your answer 

whenever you’re solving a definite integral.

So, what do we mean when we say F(x) = 2? What does this value 

represent? When we say that F(x) = 2, it means that the area



1.  below the graph of f (x),

2. above the x-axis, and

3. between the lines x = 0 and x = 2

is 2 square units.

Keep in mind that we’re talking about the area enclosed by the graph and 

the x-axis. If f (x) drops below the x-axis inside [a, b], we treat the area under 

the x-axis as negative area.

Then finding the value of F(x) means subtracting the area enclosed by the 

graph under the x-axis from the area enclosed by the graph above the x-

axis.



In other words, evaluating the definite integral of f (x) = sin x on [−1,2] 
means subtracting the area enclosed by the graph below the x-axis from 

the area enclosed by the graph above the x-axis.

This means that, if the area enclosed by the graph below the x-axis is 

larger than the area enclosed by the graph above the x-axis, then the 

value of F(x) will be negative (F(x) < 0).

If the area enclosed by the graph below the x-axis is exactly equal to the 

area enclosed by the graph above the x-axis, then F(x) = 0.



Fundamental theorem of calculus part 
1

The fundamental theorem of calculus (FTC) is the formula that relates the 

derivative to the integral and provides us with a method for evaluating 

definite integrals.

Part 1

Part 1 of the Fundamental Theorem of Calculus states that

∫
b

a
f (x) dx = F(b) − F(a)

where F(x) is an antiderivative of f (x), which means that the integral of f (x) 
on the interval [a, b] is F(x).

Part 1 of the FTC tells us that we can figure out the exact value of an 

indefinite integral (area under the curve) when we know the interval over 

which to evaluate (in this case the interval [a, b]).

There are rules to keep in mind. First, the function f (x) must be continuous 

during the the interval in question. This means that between a and b the 

graph of the function cannot have any breaks (where it does not exist), 

holes (where it does not exist at a single point) or jumps (where the 

function exists at two separate y-values for a single x-value). Second, the 

interval must be closed, which means that both limits must be constants 

(real numbers only, no infinity allowed).



When it comes to solving a problem using Part 1 of the Fundamental 

Theorem, we can use the chart below to help us figure out how to do it.

Given integral How to solve it

f (x) = ∫
x

a
f (t) dt Plug x in for t.

f (x) = ∫
a

x
f (t) dt Reverse limits of integration and multiply by 

−1, then plug x in for t.

f (x) = ∫
g(x)

a
f (t) dt Plug g(x) in for t, then multiply by dg/dx.

f (x) = ∫
a

g(x)
f (t) dt Reverse limits of integration and multiply by 

−1, then plug g(x) in for t and multiply by dg/dx.

f (x) = ∫
h(x)

g(x)
f (t) dt Split the limits of integration as 

∫
0

g(x)
f (t) dt + ∫

h(x)

0
f (t) dt. Reverse limits of 

integration on ∫
0

g(x)
f (t) dt and multiply by −1, 

then plug g(x) and h(x) in for t, multiplying by 

dg/dx and dh /dx respectively.

Example



Use Part 1 of the Fundamental Theorem of Calculus to find the value of the 

integral.

F(x) = ∫
3

1
x3 dx

First, we perform the integration.

F(x) =
x4

4

3

1

Next, we plug in the upper and lower limits, subtracting the lower limit 

from the upper limit.

F =
(3)4

4
−

(1)4

4

F =
81
4

−
1
4

F =
80
4

Let’s double check that this satisfies Part 1 of the FTC.

If we break the equation into parts,

F(b) = ∫ x3 dx where b = 3 and F(a) = ∫ x3 dx where a = 1

and evaluate the two equations separately, we can double check our 

answer.



First we integrate as an indefinite integral.

F(x) = ∫ x3 dx

F(x) =
x4

4
+ C

Next we plug in b = 3 and a = 1.

F(3) =
(3)4

4
+ C

F(1) =
(1)4

4
+ C

Finally, we find F(b) − F(a).

F(3) − F(1) =
(3)4

4
+ C − [ (1)4

4
+ C]

F(3) − F(1) =
(3)4

4
+ C −

(1)4

4
− C

F(3) − F(1) =
80
4

As you can see, we’ve verified that value of F that we found earlier. This 

answer is what we expected and it confirms Part 1 of the FTC.



Fundamental theorem of calculus part 
2

Part 2 of the Fundamental Theorem of Calculus states that

If F(x) = ∫
x

a
f (t) dt,

where f (t) is continuous,

then 
dF(x)

dx
= f (x)

This means that if you take the integral of the function f (t) over the interval 

[a, x], the answer you get can be derived to get back to f (x). What this 

means is that you can double check your integration for mistakes. In order 

for this to work, the interval you’re evaluating must include one variable, x, 

and one constant, a.

Example

Confirm Part 2 of the Fundamental Theorem of Calculus.

F(t) = ∫
x

2
t3 + 2t4 dt

When we integrate we get

F(t) = ( t4

4
+

2t5

5
+ C)

x

2



Evaluating over the interval, we get

F(x) =
x4

4
+

2x5

5
+ C − [ (2)4

4
+

2(2)5

5
+ C]

F(x) =
x4

4
+

2x5

5
+ C − (4 +

64
5

+ C)
F(x) =

x4

4
+

2x5

5
+ C − ( 20

5
+

64
5

+ C)
F(x) =

x4

4
+

2x5

5
+ C −

84
5

− C

F(x) =
x4

4
+

2x5

5
−

84
5

For the final step, we need to take the derivative of F(x).

dF(x)
dx

=
d ( x4

4 + 2x5

5
− 84

5 )
dx

dF(x)
dx

= ( 4x3

4
+

10x4

5
− 0)

dF(x)
dx

= x3 + 2x4

We know that 

f (t) = t3 + 2t4

So by substituting x for t we get

f (x) = x3 + 2x4



We can see that 
dF(x)

dx
= f (x).

dF(x)
dx

= x3 + 2x4 = f (x)

Our final answer confirms Part 2 of the FTC.



Initial value problems

Consider the following situation. You’re given the function f (x) = 2x − 3 and 

asked to find its derivative. This function is pretty basic, so unless you’re 

taking calculus out of order, it shouldn’t cause you too much stress to 

figure out that the derivative of f (x) is 2.

Now consider what it would be like to work backwards from our 

derivative. If you’re given the function f′�(x) = 2 and asked to find its 

integral, it’s impossible for you to get back to the original function, 

f (x) = 2x − 3. As you can see, taking the integral of the derivative we found 

gives us back the first term of the original function, 2x, but somewhere 

along the way we lost the −3. In fact, we always lose the constant (term 

without a variable attached), when we take the derivative of something. 

Which means we’re never going to get the constant back when we try to 

integrate our derivative. It’s lost forever.

Accounting for that lost constant is why we always add C to the end of our 

integrals. C is called the “constant of integration” and it acts as a 

placeholder for our missing constant. In order to get back to our original 

function, and find our long-lost friend, −3 , we’ll need some additional 

information about this problem, namely, an initial condition, which looks 

like this:

y(0) = − 3

Problems that provide you with one or more initial conditions are called 

Initial Value Problems. Initial conditions take what would otherwise be an 



entire rainbow of possible solutions, and whittles them down to one 

specific solution. 

Remember that the basic idea behind Initial Value Problems is that, once 

you differentiate a function, you lose some information about that 

function. More specifically, you lose the constant. By integrating f′�(x), you 

get a family of solutions that only differ by a constant. 

∫ 2 dx = 2x − 3

∫ 2 dx = 2x + 7

∫ 2 dx = 2x − 2

Given one point on the function, (the initial condition), you can pick a 

specific solution out of a much broader solution set.

Example

Given f′�(x) = 2 and f (0) = − 3, find f (x).

Integrating f′�(x) means we’re integrating 2 dx, and we’ll get 2x + C, where C 

is the constant of integration. At this point, C is holding the place of our 

now familiar friend, −3, but we don’t know that yet. We have to use our 

initial condition to find out.



To use our initial condition, f (0) = − 3, we plug in the number inside the 

parentheses for x and the number on the right side of the equation for y. 

Therefore, in our case, we’ll plug in 0 for x and −3 for y.

−3 = 2(0) + C

−3 = C

Notice that the solution would have been different had we been given a 

different initial condition. Now we know exactly what the full solution looks 

like, and exactly which one of the many possible solutions was originally 

differentiated. Therefore, the final answer is the function we originally 

differentiated:

f (x) = 2x − 3



Solving Integrals 5

Now that we know what an integral is, we’ll talk about different techniques 

we can use to solve integrals.

83



U-substitution

Finding derivatives of elementary functions was a relatively simple 

process, because taking the derivative only meant applying the right 

derivative rules.

This is not the case with integration. Unlike derivatives, it may not be 

immediately clear which integration rules to use, and every function is like 

a puzzle.

Most integrals need some work before you can even begin the integration. 

They have to be transformed or manipulated in order to reduce the 

function’s form into some simpler form. U-substitution is the simplest tool 

we have to transform integrals.

When you use u-substitution, you’ll define u as a differentiable function in 

terms of the variable in the integral, take the derivative of u to get du, and 

then substitute these values back into your integrals.

Unfortunately, there are no perfect rules for defining u. If you try a 

substitution that doesn’t work, just try another one. With practice, you’ll 

get faster at identifying the right value for u.

Here are some common substitutions you can try.

For integrals that contain power functions, try using the base of the power 

function as the substitution.

Example



Use u-substitution to evaluate the integral. 

∫ x (x2 + 1)4 dx

Let

u = x2 + 1

du = 2x dx

dx =
du
2x

Substituting back into the integral, we get

∫ x(u)4 du
2x

∫ u4 du
2

1
2 ∫ u4 du

This is much simpler than our original integral, and something we can 

actually integrate.

1
2 ( 1

5
u5) + C

1
10

u5 + C



Now, back-substitute to put the answer back in terms of x instead of u.

1
10 (x2 + 1)5 + C

For integrals of rational functions, if the numerator is of equal or greater 

degree than the denominator, always perform division first. Otherwise, try 

using the denominator as a possible substitution.

Example

Use u-substitution to evaluate the integral.

∫ x
x2 + 1

dx

Let

u = x2 + 1

du = 2x dx

dx =
du
2x

Substituting back into the integral, we get

∫ x
u

⋅
du
2x



∫ 1
u

⋅
du
2

1
2 ∫ 1

u
du

This is much simpler than our original integral, and something we can 

actually integrate.

1
2

ln |u | + C

Now, back-substitute to put the answer back in terms of x instead of u.

1
2

ln x2 + 1 + C

For integrals containing exponential functions, try using the power for the 

substitution.

Example

Use u-substitution to evaluate the integral.

∫ esin x cos x cos 2x dx

Let u = sin x cos x, and using the product rule to differentiate,



du = [( d
dx

sin x) cos x + sin x ( d
dx

cos x)] dx

du = [cos x ⋅ cos x + sin x ⋅ (−sin x)] dx

du = cos2 x − sin2 x dx

du = cos 2x dx

Substituting back into the integral, we get

∫ eu du

eu + C

Now, back-substitute to put the answer back in terms of x instead of u.

esin x cos x + C

Integrals containing trigonometric functions can be more challenging to 

manipulate. Sometimes, the value of u isn’t even part of the original 

integral. Therefore, the better you know your trigonometric identities, the 

better off you’ll be.

Example

Use u-substitution to evaluate the integral.

∫ tan x
cos x

dx



Since

tan x =
sin x
cos x

we can rewrite the integral as

∫
sin x
cos x

cos x
dx

∫ sin x
cos x

⋅
1

cos x
dx

∫ sin x
cos2 x

dx

Let

u = cos x

du = − sin x dx

dx = −
du

sin x

Substituting back into the integral, we get

∫ sin x
u2

⋅ (−
du

sin x )
−∫ 1

u2
du

−∫ u−2 du



−
1

−1
u−1 + C

u−1 + C

1
u

+ C

Now, back-substitute to put the answer back in terms of x instead of u.

1
cos x

+ C



Integration by parts

Unlike differentiation, integration is not always straightforward and we 

can’t always express the integral of every function in terms of neat and 

clean elementary functions.

When your integral is too complicated to solve without a fancy technique 

and you’ve ruled out u-substitution, integration by parts should be your 

next approach for evaluating your integral. If you remember that the 

product rule was your method for finding derivatives of functions that 

were multiplied together, you can think about integration by parts as the 

method often used for integrating functions that are multiplied together.

Suppose you want to integrate the following

∫ xe−x dx

How can you integrate the above expression quickly and easily? You can’t, 

unless you’re a super human genius. But hopefully you can recognize that 

you have two functions multiplied together inside of this integral, one 

being x and the other being e−x. If you try u-substitution, you won’t find 

anything to cancel in your integral, and you’ll be no better off, which 

means that your next step should be an attempt at integrating with our 

new method, integration by parts.

The formula we’ll use is derived by integrating the product rule from, and 

looks like this:

∫ u dv = uv − ∫ v du



In the formula above, everything to the left of the equals sign represents 

your original function, which means your original function must be 

composed of u and dv. Your job is to identify which part of your original 

function will be u, and which will be dv.

My favorite technique for picking u and dv is to assign u to the function in 

your integral whose derivative is simpler than the original u. Consider 

again the example from earlier:

∫ xe−x dx

I would assign u to x, because the derivative of x is 1, which is much simpler 

than x. If you have ln x in your integral, that’s usually a good bet for u 

because the derivative of ln x is 1/x; much simpler than ln x. Once you pick 

which of your functions will be represented by u, the rest is easy because 

you know that the other function will be represented by dv.

Using this formula can be challenging for a lot of students, but the hardest 

part is identifying which of your two functions will be u and which will be 

dv. That’s the very first thing you have to tackle with integration by parts, 

so once you get that over with, you’ll be home free.

After completing this first crucial step, you take the derivative of u, called 

du, and the integral of dv, which will be v. Now that you have u, du, v and dv, 

you can plug all of your components into the right side of the integration 

by parts formula. Everything to the right of the equals sign will be part of 

your answer. If you’ve correctly assigned u and dv, the integral on the right 

should now be much easier to integrate.



Example

Evaluate the integral.

∫ xe−x dx

Our integral is comprised of two functions, x and e−x. One of them must be 

u and the other dv. Since the derivative of x is 1, which is much simpler than 

the derivative of e−x, we’ll assign u to x.

u = x	 → differentiate → 	 du = 1 dx

dv = e−x dx	 → integrate → 	 v = − e−x

Plugging all four components into the right side of our formula gives the 

following transformation of our original function:

(x)(−e−x) − ∫ (−e−x)(1 dx)

−xe−x + ∫ e−x dx

Now that we have something we can work with, we integrate.

−xe−x + (−e−x) + C

The answer is therefore

−xe−x − e−x + C



Or factored, we have

−e−x(x + 1) + C



Partial fractions

The method of partial fractions is an extremely useful tool whenever you 

need to integrate a fraction with polynomials in both the numerator and 

denominator; something like this:

f (x) =
7x + 1
x2 − 1

If you were asked to integrate

f (x) =
3

x + 1
+

4
x − 1

you shouldn’t have too much trouble, because if you don’t have a variable 

in the numerator of your fraction, then your integral is simply the 

numerator multiplied by the natural log (ln) of the absolute value of the 

denominator, like this:

∫ 3
x + 1

+
4

x − 1
dx

3 ln |x + 1 | + 4 ln |x − 1 | + C

where C is the constant of integration. Not too hard, right?

Don’t forget to use chain rule and divide by the derivative of your 

denominator. In the case above, the derivatives of both of our 

denominators are 1, so this step didn’t appear. But if your integral is

∫ 3
2x + 1

dx



then your answer will be

3
2

ln |2x + 1 | + C

because the derivative of our denominator is 2, which means we have to 

divide by 2, according to chain rule.

So back to the original example. We said at the beginning of this section 

that

f (x) =
7x + 1
x2 − 1

would be difficult to integrate, but that we wouldn’t have as much trouble 

with

f (x) =
3

x + 1
+

4
x − 1

In fact, these two are actually the same function. If we try adding 3/(x + 1) 
and 4/(x − 1) together, you’ll see that we get back to the original function.

f (x) =
3

x + 1
+

4
x − 1

f (x) =
3(x − 1) + 4(x + 1)

(x + 1)(x − 1)

f (x) =
3x − 3 + 4x + 4
x2 − x + x − 1

f (x) =
7x + 1
x2 − 1



Again, attempting to integrate f (x) = (7x + 1)/(x2 − 1) is extremely difficult. 

But if you can express this function as f (x) = 3/(x + 1) + 4/(x − 1), then 

integrating is much simpler. This method of converting complicated 

fractions into simpler fractions that are easier to integrate is called 

decomposition into “partial fractions”.

Let’s start talking about how to perform a partial fractions decomposition. 

Before we move forward it’s important to remember that you must 

perform long division with your polynomials whenever the degree (value 

of the greatest exponent) of your denominator is not greater than the 

degree of your numerator, as is the case in the following example.

Example

Evaluate the integral.

∫ x3 − 3x2 + 2
x + 3

dx

Because the degree (the value of the highest exponent in the numerator, 

3), is greater than the degree of the denominator, 1, we have to perform 

long division first.

	 x2 − 6x + 18 −
52

x + 3

x + 3	 x3 − 3x2 + 0x + 2

	 −(x3 + 3x2)



	 −6x2

	 −(−6x2 − 18x)

	 18x + 2

	 −(18x + 54)

	 −52

After performing long division, our fraction has been decomposed into

(x2 − 6x + 18) −
52

x + 3

Now the function is easy to integrate.

∫ x2 − 6x + 18 −
52

x + 3
dx

1
3

x3 − 3x2 + 18x − 52 ln |x + 3 | + C

Okay. So now that you’ve either performed long division or confirmed that 

the degree of your denominator is greater than the degree of your 

numerator (such that you don’t have to perform long division), it’s time for 

full-blown partial fractions. Oh goodie! I hope you’re excited.

The first step is to factor your denominator as much as you can. Your 

second step will be determining which type of denominator you’re dealing 

with, depending on how it factors. Your denominator will be the product of 

the following:



1.  Distinct linear factors

2. Repeated linear factors

3. Distinct quadratic factors

4. Repeated quadratic factors

Let’s take a look at an example of each of these four cases so that you 

understand the difference between them.

Distinct linear factors

In this first example, we’ll look at the first case above, in which the 

denominator is a product of distinct linear factors.

Example

Evaluate the integral.

∫ x2 + 2x + 1
x3 − 2x2 − x + 2

dx

Since the degree of the denominator is higher than the degree of the 

numerator, we don’t have to perform long division before we start. 

Instead, we can move straight to factoring the denominator, as follows.

∫ x2 + 2x + 1
(x − 1)(x + 1)(x − 2)

dx



We can see that our denominator is a product of distinct linear factors 

because (x − 1), (x + 1), and (x − 2) are all different first-degree factors.

Once we have it factored, we set our fraction equal to the sum of its 

component parts, assigning new variables to the numerator of each of our 

fractions. Since our denominator can be broken down into three different 

factors, we need three variables A, B and C to go on top of each one of our 

new fractions, like so:

x2 + 2x + 1
(x − 1)(x + 1)(x − 2)

=
A

x − 1
+

B
x + 1

+
C

x − 2

Now that we’ve separated our original function into its partial fractions, we 

multiply both sides by the denominator of the left-hand side. The 

denominator will cancel on the left-hand side, and on the right, each of the 

three partial fractions will end up multiplied by all the factors other than 

the one that was previously included in its denominator.

x2 + 2x + 1 = A(x + 1)(x − 2) + B(x − 1)(x − 2) + C(x − 1)(x + 1)

The next step is to multiply out all of these terms.

x2 + 2x + 1 = A (x2 − x − 2) + B (x2 − 3x + 2) + C (x2 − 1)

x2 + 2x + 1 = Ax2 − Ax − 2A + Bx2 − 3Bx + 2B + Cx2 − C

Now we collect like terms together, meaning that we re-order them, 

putting all the x2 terms next to each other, all the x terms next to each 

other, and then all the constants next to each other.

x2 + 2x + 1 = (Ax2 + Bx2 + Cx2) + (−Ax − 3Bx) + (−2A + 2B − C )

Finally, we factor out the x terms.



x2 + 2x + 1 = (A + B + C )x2 + (−A − 3B)x + (−2A + 2B − C )

Doing this allows us to equate coefficients on the left and right sides. Do 

you see how the coefficient on the x2 term on the left-hand side of the 

equation is 1? Well, the coefficient on the x2 term on the right-hand side is 

(A + B + C), which means those two must be equal. We can do the same for 

the x term, as well as for the constants. We get the following three 

equations:

[1]  A + B + C = 1

[2]  −A − 3B = 2

[3]  −2A + 2B − C = 1

Now that we have these equations, we need to solve for our three 

constants A, B, and C. This can easily get confusing, but with practice, you 

should get the hang of it. If you have one equation with only two variables 

instead of all three, like [2], that’s a good place to start. Solving [2] for A 

gives us

[4]  A = − 3B − 2

Now we’ll substitute [4] for A into [1] and [3] and then simplify, such that 

these equations:

(−3B − 2) + B + C = 1

−2(−3B − 2) + 2B − C = 1

become these equations:

[5]  −2B + C = 3



[6]  8B − C = − 3

Now we can add [5] and [6] together to solve for B.

−2B + C + 8B − C = 3 − 3

6B = 0

[7]  B = 0

Plugging [7] back into [4] to find A, we get

A = − 3(0) − 2

[8]  A = − 2

Plugging [7] back into [5] to find B, we get

−2(0) + C = 3

[9]  C = 3

Having solved for the values of our three constants in [7], [8] and [9], 

we’re finally ready to plug them back into our partial fractions 

decomposition. Doing so should produce something that’s easier for us to 

integrate than our original function.

∫ x2 + 2x + 1
(x − 1)(x + 1)(x − 2)

dx = ∫ −2
x − 1

+
0

x + 1
+

3
x − 2

dx

Simplifying the integral on the right side, we get

∫ 3
x − 2

−
2

x − 1
dx



Remembering that the integral of 1/x is ln |x | + C, we integrate and get

3 ln |x − 2 | − 2 ln |x − 1 | + C

And using laws of logarithms to simplify the final answer, we get

3
2

ln
x − 2
x − 1

+ C

Repeated linear factors

Let’s move now to the second of our four case types above, in which the 

denominator will be a product of linear factors, some of which are 

repeated.

Example

Evaluate the integral.

∫ 2x5 − 3x4 + 5x3 + 3x2 − 9x + 13
x4 − 2x2 + 1

dx

You’ll see that we need to carry out long division before we start 

factoring, since the degree of the numerator is greater than the degree of 

the denominator (5 > 4).

	 2x − 3 +
9x3 − 3x2 − 11x + 16

x4 − 2x2 + 1



x4 − 2x2 + 1	 2x5 − 3x4 + 5x3 + 3x2 − 9x + 13

	 −(2x5 + 0x4 − 4x3 + 0x2 + 2x)

	 −3x4 + 9x3 + 3x2 − 11x + 13

	 −(−3x4 + 0x3 + 6x2 + 0x − 3)

	 9x3 − 3x2 − 11x + 16

Now that the degree of the remainder is less than the degree of the 

original denominator, we can rewrite the problem as

∫ 2x − 3 +
9x3 − 3x2 − 11x + 16

x4 − 2x2 + 1
dx

Integrating the 2x − 3 will be simple, so for now, let’s focus on the fraction. 

We’ll factor the denominator.

9x3 − 3x2 − 11x + 16

(x2 − 1) (x2 − 1)

9x3 − 3x2 − 11x + 16
(x + 1)(x − 1)(x + 1)(x − 1)

9x3 − 3x2 − 11x + 16
(x + 1)2(x − 1)2

Given the factors involved in our denominator, you might think that the 

partial fraction decomposition would look like this:

9x3 − 3x2 − 11x + 16
(x + 1)2(x − 1)2

=
A

x + 1
+

B
x + 1

+
C

x − 1
+

D
x − 1



However, the fact that we’re dealing with repeated factors, ((x + 1) is a 

factor twice and (x − 1) is a factor twice), the partial fractions 

decomposition is actually the following:

9x3 − 3x2 − 11x + 16
x4 − 2x2 + 1

=
A

x − 1
+

B
(x − 1)2

+
C

x + 1
+

D
(x + 1)2

To see why, let’s take a simpler example. The partial fractions 

decomposition of x2 /[(x + 1)4] is
x2

(x + 1)4
=

A
x + 1

+
B

(x + 1)2
+

C
(x + 1)3

+
D

(x + 1)4

Notice how we included (x + 1)4, our original factor, as well as each factor 

of lesser degree? We have to do this every time we have a repeated 

factor.

Let’s continue with our original example.

9x3 − 3x2 − 11x + 16
x4 − 2x2 + 1

=
A

x − 1
+

B
(x − 1)2

+
C

x + 1
+

D
(x + 1)2

We’ll multiply both sides of our equation by the denominator from the left 

side, (x + 1)2(x − 1)2, which will cancel the denominator on the left and some 

of the factors on the right.

9x3 − 3x2 − 11x + 16 = A(x − 1)(x + 1)2 + B(x + 1)2 + C(x − 1)2(x + 1) + D(x − 1)2

To simplify, we’ll start multiplying all terms on the right side together.

9x3 − 3x2 − 11x + 16 = A (x3 + x2 − x − 1) + B (x2 + 2x + 1)
+C (x3 − x2 − x + 1) + D (x2 − 2x + 1)



Now we’ll group like terms together.

9x3 − 3x2 − 11x + 16 = (A + C)x3 + (A + B − C + D)x2

+(−A + 2B − C − 2D)x + (−A + B + C + D)

Equating coefficients on both sides of the equation gives us the following 

equations.

[1]  A + C = 9

[2]  A + B − C + D = − 3

[3]  −A + 2B − C − 2D = − 11

[4]  −A + B + C + D = 16

Now we’ll start solving for variables. If we subtract A from both sides of [1], 

we get

[5]  C = 9 − A

If we plug [5] into [2], [3] and [4], we have

A + B − (9 − A) + D = − 3

−A + 2B − (9 − A) − 2D = − 11

−A + B + (9 − A) + D = 16

And simplifying, we get the following:

[6]  2A + B + D = 6

[7]  2B − 2D = − 2



[8]  −2A + B + D = 7

Let’s now solve [7] for B.

2B − 2D = − 2

2B = − 2 + 2D

B = − 1 + D

[9]  B = D − 1

Plugging [9] into [6] and [8], we get

2A + (D − 1) + D = 6

−2A + (D − 1) + D = 7

And simplifying, we get the following:

[10]  2A + 2D = 7

[11]  −2A + 2D = 8

We solve [11] for D.

−2A + 2D = 8

2D = 8 + 2A

[12]  D = 4 + A

We plug [12] into [10] to solve for A.

2A + 2(4 + A) = 7

2A + 8 + 2A = 7



4A = − 1

[13]  A = −
1
4

At last! We’ve solved for one variable. Now it’s pretty quick to find the 

other three. With [13], we can use [12] to find D.

D = 4 −
1
4

[14]  D =
15
4

We plug [14] into [9] to find B.

B =
15
4

− 1

[15]  B =
11
4

Last but not least, we plug [13] into [5] to solve for C.

C = 9 − (−
1
4 )

C = 9 +
1
4

[16]  C =
37
4

Taking the values of the constants from [13], [14], [15], [16] and bringing 

back the 2x − 3 that we put aside following the long division earlier in this 

example, we’ll write out the partial fractions decomposition.



∫ 2x5 − 3x4 + 5x3 + 3x2 − 9x + 13
x4 − 2x2 + 1

dx

∫ 2x − 3 +
9x3 − 3x2 − 11x + 16

x4 − 2x2 + 1
dx

∫ 2x − 3 +
− 1

4

x − 1
+

11
4

(x − 1)2
+

37
4

x + 1
+

15
4

(x + 1)2
dx

Now we can integrate. Using the rule from algebra that 1/(xn) = x−n, we’ll 

flip the second and fourth fractions so that they are easier to integrate.

∫ 2x − 3 dx −
1
4 ∫ 1

x − 1
dx +

11
4 ∫ (x − 1)−2 dx +

37
4 ∫ 1

x + 1
dx +

15
4 ∫ (x + 1)−2 dx

Now that we’ve simplified, we’ll integrate to get our final answer.

x2 − 3x −
1
4

ln |x − 1 | −
11

4(x − 1)
+

37
4

ln |x + 1 | −
15

4(x + 1)
+ C

Distinct quadratic factors

Now let’s take a look at an example in which the denominator is a product 

of distinct quadratic factors.

In order to solve these types of integrals, you’ll sometimes need the 

following formula:

[A]  ∫ 1
mx2 + n2

dx =
m
n

tan−1 ( x
n ) + C

Example



Evaluate the integral.

∫ x2 − 2x − 5
x3 − x2 + 9x − 9

dx

As always, the first thing to notice is that the degree of the denominator is 

larger than the degree of the numerator, which means that we don’t have 

to perform long division before we can start factoring the denominator. So 

let’s get right to it and factor the denominator.

∫ x2 − 2x − 5
(x − 1)(x2 + 9)

dx

We have one distinct linear factor, (x − 1), and one distinct quadratic 

factor, (x2 + 9).

As we already know, linear factors require one constant in the numerator, 

like this:

A
x − 1

The numerators of quadratic factors require a polynomial, like this:

Ax + B
x2 + 9

Remember though that when we add these fractions together in the 

partial fractions decomposition, we never want to repeat the same 

constant, so the partial fractions decomposition is



x2 − 2x − 5
(x − 1)(x2 + 9)

=
A

x − 1
+

Bx + C
x2 + 9

See how we started the second fraction with B instead of A? If we added a 

second quadratic factor to this example, its numerator would be Dx + E.

Multiplying both sides of our decomposition by the denominator on the 

left gives

x2 − 2x − 5 = A (x2 + 9) + (Bx + C )(x − 1)

x2 − 2x − 5 = Ax2 + 9A + Bx2 − Bx + Cx − C

x2 − 2x − 5 = (Ax2 + Bx2) + (−Bx + Cx) + (9A − C )

x2 − 2x − 5 = (A + B)x2 + (−B + C )x + (9A − C )

Then equating coefficients on the left and right sides gives us the 

following equations.

[1]  A + B = 1

[2]  −B + C = − 2

[3]  9A − C = − 5

We solve [1] for A.

[4]  A = 1 − B

Plugging [4] into [3] leaves us with two equations in terms of B and C.

[2]  −B + C = − 2

[5]  9(1 − B) − C = − 5



Simplifying [5] leaves us with

[2]  −B + C = − 2

[6]  −9B − C = − 14

Solving [2] for C we get

[7]  C = B − 2

Plugging [7] into [6] gives

−9B − (B − 2) = − 14

−10B + 2 = − 14

−10B = − 16

[8]  B =
8
5

Now that we have a value for B, we’ll plug [8] into [7] to solve for C.

C =
8
5

− 2

[9]  C = −
2
5

We can also plug [8] into [4] to solve for A.

A = 1 −
8
5

[10]  A = −
3
5

Plugging [8], [9] and [10] into our partial fractions decomposition, we get



∫ x2 − 2x − 5
(x − 1)(x2 + 9)

dx = ∫
− 3

5

x − 1
+

8
5

x − 2
5

x2 + 9
dx

−
3
5 ∫ 1

x − 1
dx +

8
5 ∫ x

x2 + 9
dx −

2
5 ∫ 1

x2 + 9
dx

Integrating the first term only, we get

−
3
5

ln |x − 1 | +
8
5 ∫ x

x2 + 9
dx −

2
5 ∫ 1

x2 + 9
dx

Using u-substitution to integrate the second integral, letting

u = x2 + 9 

du = 2x dx

dx =
du
2x

we get

−
3
5

ln |x − 1 | +
8
5 ∫ x

u
⋅

du
2x

−
2
5 ∫ 1

x2 + 9
dx

−
3
5

ln |x − 1 | +
4
5 ∫ 1

u
du −

2
5 ∫ 1

x2 + 9
dx

−
3
5

ln |x − 1 | +
4
5

ln |u | −
2
5 ∫ 1

x2 + 9
dx

−
3
5

ln |x − 1 | +
4
5

ln x2 + 9 −
2
5 ∫ 1

x2 + 9
dx

Using [A] to integrate the third term, we get



[A]  ∫ 1
mx2 + n2

dx =
m
n

tan−1 ( x
n ) + C

m = 1

n = 3

−
3
5

ln |x − 1 | +
4
5

ln x2 + 9 −
2
5 [ 1

3
tan−1 ( x

3 )] + C

−
3
5

ln |x − 1 | +
4
5

ln x2 + 9 −
2
15

tan−1 ( x
3 ) + C

1
5 [4 ln x2 + 9 − 3 ln |x − 1 | −

2
3

tan−1 ( x
3 )] + C

Repeated quadratic factors

Last but not least, let’s take a look at an example in which the denominator 

is a product of quadratic factors, at least some of which are repeated.

We’ll be using formula [A] like we did in the last example.

Example

Evaluate the integral.

∫ −x3 + 2x2 − x + 1

x (x2 + 1)2 dx



Remember, when we’re dealing with repeated factors, we have to include 

every lesser degree of that factor in our partial fractions decomposition, 

which will be

−x3 + 2x2 − x + 1

x (x2 + 1)2 =
A
x

+
Bx + C
x2 + 1

+
Dx + E

(x2 + 1)2

Multiplying both sides by the denominator of the left-hand side gives us

−x3 + 2x2 − x + 1 = A (x2 + 1)2 + (Bx + C )x (x2 + 1) + (Dx + E )x

Simplifying the right-hand side, we get

−x3 + 2x2 − x + 1 = A (x4 + 2x2 + 1) + (Bx + C )(x3 + x) + (Dx + E )x

−x3 + 2x2 − x + 1 = Ax4 + 2Ax2 + A + Bx4 + Bx2 + Cx3 + Cx + Dx2 + Ex

Grouping like terms together, we have

−x3 + 2x2 − x + 1 = (Ax4 + Bx4) + (Cx3) + (2Ax2 + Bx2 + Dx2) + (Cx + Ex) + (A)

And factoring, we get

−x3 + 2x2 − x + 1 = (A + B)x4 + (C )x3 + (2A + B + D)x2 + (C + E )x + (A)

Now we equate coefficients and write down the equations we’ll use to 

solve for each of our constants.

[1]  A + B = 0

[2]  C = − 1

[3]  2A + B + D = 2



[4]  C + E = − 1

[5]  A = 1

We already have values for A and C. Plugging [5] into [1] to solve for B 

gives us

1 + B = 0

[6]  B = − 1

Plugging [2] into [4] to solve for E, we get

−1 + E = − 1

[7]  E = 0

Plugging [5] and [6] into [3] to solve for D gives us

2(1) − 1 + D = 2

[8]  D = 1

Plugging our constants from [2], [5], [6], [7] and [8] back into the 

decomposition, we get

∫ (1)
x

+
(−1)x + (−1)

x2 + 1
+

(1)x + (0)

(x2 + 1)2 dx

∫ 1
x

−
x + 1
x2 + 1

+
x

(x2 + 1)2 dx

∫ 1
x

dx − ∫ x + 1
x2 + 1

dx + ∫ x

(x2 + 1)2 dx



∫ 1
x

dx − ∫ x
x2 + 1

dx − ∫ 1
x2 + 1

dx + ∫ x

(x2 + 1)2 dx

Evaluating the first integral only, we get

ln |x | − ∫ x
x2 + 1

dx − ∫ 1
x2 + 1

dx + ∫ x

(x2 + 1)2 dx

Using u-substitution to evaluate the second integral, letting

u = x2 + 1

du = 2x dx

dx =
du
2x

we get

ln |x | − ∫ x
u

⋅
du
2x

− ∫ 1
x2 + 1

dx + ∫ x

(x2 + 1)2 dx

ln |x | −
1
2 ∫ 1

u
du − ∫ 1

x2 + 1
dx + ∫ x

(x2 + 1)2 dx

ln |x | −
1
2

ln |u | − ∫ 1
x2 + 1

dx + ∫ x

(x2 + 1)2 dx

ln |x | −
1
2

ln x2 + 1 − ∫ 1
x2 + 1

dx + ∫ x

(x2 + 1)2 dx

Using formula [A] to evaluate the third integral, we get



[A]  ∫ 1
mx2 + n2

dx =
m
n

tan−1 ( x
n ) + C

m = 1

n = 1

ln |x | −
1
2

ln x2 + 1 −
1
1

tan−1 ( x
1 ) + ∫ x

(x2 + 1)2 dx

ln |x | −
1
2

ln x2 + 1 − tan−1 x + ∫ x

(x2 + 1)2 dx

Using u-substitution to evaluate the fourth integral, letting

u = x2 + 1

du = 2x dx

dx =
du
2x

we get

ln |x | −
1
2

ln x2 + 1 − tan−1 x + ∫ x
u2

⋅
du
2x

ln |x | −
1
2

ln x2 + 1 − tan−1 x +
1
2 ∫ 1

u2
du

ln |x | −
1
2

ln x2 + 1 − tan−1 x +
1
2 ∫ u−2 du

ln |x | −
1
2

ln x2 + 1 − tan−1 x −
1
2u

+ C

And plugging back in for u gives us the final answer.



ln |x | −
1
2

ln x2 + 1 − tan−1 x −
1

2 (x2 + 1)
+ C

In summary, in order to integrate by expressing rational functions 

(fractions) in terms of their partial fractions decomposition, you should 

follow these steps:

1.  Ensure that the rational function is “proper”, such that the degree 

(greatest exponent) of the numerator is less than the degree of 

the denominator. If necessary, use long division to make it proper.

2. Perform the partial fractions decomposition by factoring the 

denominator, which will always be expressible as the product of 

either linear or quadratic factors, some of which may be repeated.

a.  If the denominator is a product of distinct linear factors: 

This is the simplest kind of partial fractions decomposition. 

Nothing fancy here.

b. If the denominator is a product of linear factors, some of 

which are repeated: Remember to include factors of lesser 

degree than your repeated factors.

c.  If the denominator is a product of distinct quadratic 

factors: You’ll need the following equation:

 [A]  ∫ 1
mx2 + n2

dx =
m
n

tan−1 ( x
n ) + C



d. If the denominator is a product of quadratic factors, some 

of which are repeated: Use the two formulas above and 

remember to include factors of lesser degree than your 

repeated factors.



Partial Derivatives 6

Let’s expand our knowledge of derivatives to multivariable functions, 

where we’ll learn that we’ll need one derivative per variable in order to 

describe the derivative of a multivariable function.
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Partial derivatives in two variables

By this point we’ve already learned how to find derivatives of single-

variable functions. After learning derivative rules like power rule, product 

rule, quotient rule, chain rule and others, we’re pretty comfortable 

handling the derivatives of functions like these:

f (x) = x2 + 5 

f (x) = (x2 + 4)3 sin x
x4 + ln 7x4

But now it’s time to start talking about derivatives of multivariable 

functions, such as

f (x, y) = x4y3 + x3y2 + ln xey

Finding derivatives of a multivariable function like this one may be less 

challenging than you think, because we’re actually only going to take the 

derivative with respect to one variable at a time. For example, we’ll take 

the derivative with respect to x while we treat y like it’s a constant. Then 

we’ll take another derivative of the original function, this one with respect 

to y, and we’ll treat x as a constant.

In that way, we sort of reduce the problem to a single-variable derivative 

problem, which is a derivative we already know how to handle!

We call these kinds of derivatives “partial derivatives” because we’re only 

taking the derivative of one part (variable) of the function at a time.



Remember the definition of the derivative from single-variable calculus 

(aka the difference quotient)? Let’s adapt that definition so that it works 

for us for multivariable functions.

We know that, if z is a function defined in terms of x and y, like z = f (x, y), 
then

The partial derivative of z with respect to x is

zx = fx(x, y) = lim
h→0

f (x + h, y) − f (x, y)
h

The partial derivative of z with respect to y is

zy = fy(x, y) = lim
h→0

f (x, y + h) − f (x, y)
h

The definition as we’ve written it here gives two different kinds of notation 

for the partial derivatives of z: zx or zy and fx(x, y) or fy(x, y). In fact, there are 

many ways you might see partial derivatives defined.

The partial derivatives of a function z defined in terms of x and y could be 

written in all of these ways:

The partial derivative of z with respect to x:

fx(x, y) =
∂z
∂x

=
∂f
∂x

=
∂
∂x

f (x, y) = fx = zx

The partial derivative of z with respect to y:

fy(x, y) =
∂z
∂y

=
∂f
∂y

=
∂
∂y

f (x, y) = fy = zy



Let’s use what we’ve learned so far to work through an example using the 

difference quotient to find the partial derivatives of a multivariable 

function.

Example

Using the definition, find the partial derivatives of

f (x, y) = 2x2y

For the partial derivative of z with respect to x, we’ll substitute x + h into 

the original function for x. 

f (x + h, y) = 2(x + h)2y

f (x + h, y) = 2 (x2 + 2xh + h2) y

f (x + h, y) = 2x2y + 4xhy + 2h2y

Plugging our values of f (x, y) and f (x + h, y) into the definition, we get 

fx(x, y) = lim
h→0

2x2y + 4xhy + 2h2y − 2x2y
h

fx(x, y) = lim
h→0

4xhy + 2h2y
h

fx(x, y) = lim
h→0

4xy + 2hy

fx(x, y) = lim
h→0

4xy + 2(0)y



fx(x, y) = 4xy

For the partial derivative of z with respect to y, we’ll substitute y + h into 

the original function for y.

f (x, y + h) = 2x2(y + h)

f (x, y + h) = 2x2y + 2x2h

Plugging our values of f (x, y) and f (x, y + h) into the definition, we get

fy(x, y) = lim
h→0

2x2y + 2x2h − 2x2y
h

fy(x, y) = lim
h→0

2x2h
h

fy(x, y) = lim
h→0

2x2

fy(x, y) = 2x2

You’ll remember from single-variable calculus that using the definition of 

the derivative was the “long way” that we learned to take the derivative 

before we learned the derivative rules that made the process faster. The 

good news is that we can apply all the same derivative rules to 

multivariable functions to avoid using the difference quotient! We just 

have to remember to work with only one variable at a time, treating all 

other variables as constants. 



The next example shows how the power rule provides a faster way to find 

this function’s partial derivatives.

Example

Using the power rule, find the partial derivatives of

f (x, y) = 2x2y

For the partial derivative of z with respect to x, we treat y as a constant 

and use power rule to find the derivative.

fx(x, y) = 2 ( d
dx

x2) y

fx(x, y) = 2 (2x) y

fx(x, y) = 4xy

For the partial derivative of z with respect to y, we treat x as a constant 

and use power rule to find the derivative.

fy(x, y) = 2x2 ( d
dy

y)
fy(x, y) = 2x2(1)

fy(x, y) = 2x2



Second-order partial derivatives

We already learned in single-variable calculus how to find second 

derivatives; we just took the derivative of the derivative. Remember how 

we even used the second derivative to help us with inflection points and 

concavity when we were learning optimization and sketching graphs?

Here’s an example from single variable calculus of what a second 

derivative looks like:

f (x) = 2x3

f′�(x) = 6x2

f′�′�(x) = 12x

Well, we can find the second derivative of a multivariable function in the 

same way. Except, instead of just one function that defines the second 

derivative (like f′�′�(x) = 12x above), we’ll need four functions that define the 

second derivative! Our second-order partial derivatives will be:

fxx =
∂
∂x ( ∂f

∂x ) =
∂2f
∂x2

	 The derivative with respect to x, of the first-order partial 

derivative with respect to x

fyy =
∂
∂y ( ∂f

∂y ) =
∂2f
∂y2

	 The derivative with respect to y, of the first-order partial 

derivative with respect to y

fxy =
∂
∂y ( ∂f

∂x ) =
∂2f

∂y∂x
	 The derivative with respect to y, of the first-order partial 

derivative with respect to x



fyx =
∂
∂x ( ∂f

∂y ) =
∂2f

∂x∂y
	 The derivative with respect to x, of the first-order partial 

derivative with respect to y

That wording is a little bit complicated. We can think about like the 

illustration below, where we start with the original function in the first row, 

take first derivatives in the second row, and then second derivatives in the 

third row.

f (x, y)

∂f
∂x

∂f
∂y

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂x∂y

The good news is that, even though this looks like four second-order 

partial derivatives, it’s actually only three. That’s because the two second-

order partial derivatives in the middle of the third row will always come 

out to be the same. 

Whether you start with the first-order partial derivative with respect to x, 

and then take the partial derivative of that with respect to y; or if you start 

with the first-order partial derivative with respect to y, and then take the 

partial derivative of that with respect to x; you’ll get the same answer in 

both cases. Which means our tree actually looks like this:



f (x, y)

∂f
∂x

∂f
∂y

∂2f
∂x2

∂2f
∂y∂x

=
∂2f

∂x∂y
∂2f
∂y2

Example

Find the second-order partial derivatives of the multivariable function.

f (x, y) = 2x2y

We found the first-order partial derivatives of this function in a previous 

section, and they were

fx(x, y) = 4xy

fy(x, y) = 2x2

The four second order partial derivatives are:

fxx =
∂
∂x

(4xy) = 4y

fxy =
∂
∂x (2x2) = 4x

fyx =
∂
∂y

(4xy) = 4x



fyy =
∂
∂y (2x2) = 0

Notice that the mixed second-order partial derivative is the same, 

regardless of whether you take the partial derivative first with respect to x 

and then y, or vice versa.



Differential Equations 7

Differential equations let us look at the rate of change of one variable, with 

respect to another variable.
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Introduction to differential equations

Differential equations are broadly classified into two categories:

1.  Partial Differential Equations (PDEs) 

2. Ordinary Differential Equations (ODEs)

We discussed partial differential equations (partial derivatives) previously, 

so here we’ll be discussing only ordinary differential equations.

ODEs involve the “ordinary” derivative of a function of a single variable, 

while PDEs involve partial derivatives of functions of multiple variables. So 

as we saw before,

∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

= 0

is a partial derivative. In contrast, an ordinary differential equation looks 

like this:

d2y
dx2

= 2x

ODEs can be classified as

1.  Linear differential equations

2. Nonlinear (separable) differential equations



ODEs can also be classified according to their order. When we talk about 

the “order” of a differential equation, we mean the derivative of the 

highest degree that occurs in the equation.

For example, the order of

dy
dx

− sin x cos x = 2x

is 1, because the highest-degree derivative that occurs in this equation is 

dy/dx.

In contrast, the order of

d2y
dx2

− 3 =
dy
dx

is 2, because the highest-degree derivative that occurs in this equation is 

d2y/dx2. 



Linear, first-order differential 
equations

Here we’ll be discussing linear, first-order differential equations. 

Remember from the introduction to this section that these are ordinary 

differential equations (ODEs).

A linear, first-order differential equation will be expressed in the form

[A]  
dy
dx

+ P(x)y = Q(x)

where P(x) and Q(x) are functions of x, the independent variable. Let’s talk 

about how to solve a linear, first-order differential equation.

Example

Solve the differential equation.

x
dy
dx

− 2y = x2

It’s really important that the form of the differential equation match [A] 

exactly. In order to get dy/dx by itself in our equation, we need to divide 

both sides by x.

[1]  
dy
dx

−
2
x

y = x

Matching [1] to [A] above, we can see that



P(x) = −
2
x

and

Q(x) = x

Once we’re at a point where we’ve identified P(x) and Q(x) from the 

standard form of our linear, first-order differential equation, our next step 

is to identify our equation’s “integrating factor”. To find the integrating 

factor, we use the formula

[B]  I(x) = e ∫ P(x) dx

Since

P(x) = −
2
x

the integrating factor for this equation is

I(x) = e ∫ − 2
x dx

I(x) = e−2 ∫ 1
x dx

I(x) = e−2 ln x

Note: You can leave out the constant of integration, C, when you integrate 

P(x). You can take my word for it, or you can read through the very, very 

long proof that tells you why.

I(x) = eln x−2

I(x) = x−2



Our integrating factor is

[2]  I(x) =
1
x2

We’ll multiply both sides of [1] by [2] to get

dy
dx

⋅
1
x2

−
2
x

⋅
1
x2

⋅ y = x ⋅
1
x2

dy
dx ( 1

x2 ) −
2
x3

y =
1
x

[3]  y′�x−2 − 2yx−3 = x−1

The reason we multiply by the integrating factor is that it does something 

for us that’s extremely convenient, even though we don’t realize it yet.

It turns the left side of [3] is the derivative of yx−2, in other words, y times 

our integrating factor, or yI(x). And this will always be the case! Let’s prove 

it by taking the derivative of yx−2. We’ll need to use product rule.

d
dx (yx−2) = ( d

dx
y) (x−2) + (y)( d

dx
x−2)

d
dx (yx−2) = (y′�)(x−2) + (y)(−2x−3)

d
dx (yx−2) = y′�x−2 − 2yx−3

See how the derivative we just found matches the left side of [3]? If we 

multiply through [1] by the integrating factor that we found, [2], the 

resulting left side will always be [yI(x)]′�
.



So we can substitute [yx−2]′�
 into [3] to get

[yx−2]′� = x−1

Now we integrate both sides.

∫ [yx−2]′� dx = ∫ x−1 dx

yx−2 = ln |x | + C

y = x2 (ln |x | + C)

Example

Solve the differential equation.

dy
dx

+ 2y = 4e−2x

Our problem is already in standard form for a linear differential equation, 

so we can see that P(x) = 2 and Q(x) = 4e−2x. We’ll use P(x) to find the 

integrating factor.

ρ(x) = e ∫ P(x) dx

ρ(x) = e ∫ 2 dx

ρ(x) = e2x



Then we’ll multiply through both sides of our linear differential equation by 

the integrating factor.

dy
dx (e2x) + 2y (e2x) = 4e−2x (e2x)

dy
dx

e2x + 2e2xy = 4e0

dy
dx

e2x + 2e2xy = 4

To simplify the left-hand side further we need to remember the product 

rule for differentiation,

d
dx [f (x)g(x)] = f′�(x)g(x) + f (x)g′�(x)

If we say that

f′�(x) =
dy
dx

and

g(x) = e2x

then

f (x) = y

and

g′�(x) = 2e2x

If we substitute all of that into the product rule formula, we get



d
dx (ye2x) =

dy
dx

e2x + y2e2x

d
dx (ye2x) =

dy
dx

e2x + 2e2xy

What we see now is that the right side of this equation matches exactly 

the left side of our linear differential equation after we multiplied through 

by the integrating factor. Therefore, we can make a substitution and 

replace the left side of our linear differential equation with the left side of 

the product rule formula.

d
dx (ye2x) = 4

The goal is to a general solution for y. In order to take the next step to 

solve for y, we have to integrate both sides. Integrating the derivative d /dx 

will make both things cancel out.

∫ d
dx (ye2x) dx = ∫ 4 dx

ye2x = 4x + C

Dividing both sides by e2x to get y by itself gives

y =
4x + C

e2x

This is the general solution to the linear differential equation.



Separable (nonlinear) differential 
equations

A separable, first-order differential equation is an equation in the following 

form

y′� = f (x)g(y),

where f (x) and g(y) are functions of x and y, respectively. The dependent 

variable is y; the independent variable is x. We can easily integrate 

functions in this form by separating variables.

y′� = f (x)g(y)

dy
dx

= f (x)g(y)

dy = f (x)g(y) dx

dy
g(y)

= f (x) dx

1
g(y)

dy = f (x) dx

∫ 1
g(y)

dy = ∫ f (x) dx

Sometimes in our final answer, we’ll be able to express y explicitly as a 

function of x, but not always. When we can’t, we just have to be satisfied 

with an implicit function, where y and x are not cleanly separated by the = 

sign.



Example

Solve the differential equation.

y′� = y2 sin x

First, we’ll write the equation in Leibniz notation. This makes it easier for 

us to separate the variables.

dy
dx

= y2 sin x

Next, we’ll separate the variables, collecting y’s on the left and x’s on the 

right.

dy = y2 sin x dx

dy
y2

= sin x dx

1
y2

dy = sin x dx

With variables separated, and integrating both sides, we get

∫ 1
y2

dy = ∫ sin x dx

∫ y−2 dy = ∫ sin x dx

−y−1 = − cos x + C



Note: You can leave out the constant of integration on the left side, 

because in future steps it would be absorbed into the constant on the 

right side.

−
1
y

= − cos x + C

1
y

= cos x + C

Note: We just multiplied through both sides by −1, but we didn’t change 

the sign on C, because the negative can always be absorbed into the 

constant.

1 = y(cos x + C)

y =
1

cos x + C

Sometimes we’ll encounter separable differential equations with initial 

conditions provided. Using the same method we used in the last example, 

we can find the general solution, and then plug in the initial condition(s) to 

find a particular solution to the differential equation.
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